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Abstract

A class of adaptive sampling methods is introduced for efficient posterior and predictive

simulation. The proposed methods are robust in the sense that they can handle target dis-

tributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic

method makes use of sequences of importance weighted Expectation Maximization steps in

order to efficiently construct a mixture of Student-t densities that approximates accurately

the target distribution – typically a posterior distribution, of which we only require a kernel

– in the sense that the Kullback-Leibler divergence between target and mixture is minimized.

We label this approach Mixture of t by Importance Sampling and Expectation Maximization

(MitISEM). The constructed mixture is used as a candidate density for quick and reliable

application of either Importance Sampling (IS) or the Metropolis-Hastings (MH) method.

The MitISEM algorithm performs well in exploring non-elliptical shapes of posterior and

predictive distributions, in estimating predictive likelihoods and forecasting Value at Risk,

for several examples of statistical and econometric models. We also introduce three exten-

sions of the basic MitISEM approach. First, we propose a method for applying MitISEM in

a sequential manner, so that the candidate distribution for posterior simulation is cleverly

updated when new data become available. Our results show that the computational ef-

fort reduces enormously, while the quality of the approximation remains almost unchanged.

This sequential approach can be combined with a tempering approach, which facilitates the

simulation from densities with multiple modes that are far apart. Second, we introduce a

permutation-augmented MitISEM approach, for importance sampling from posterior distri-

butions in mixture models without the requirement of imposing identification restrictions on

the model’s mixture regimes’ parameters. Third, we propose a partial MitISEM approach,

which aims at approximating the marginal and conditional posterior distributions of sub-

sets of model parameters, rather than the joint. This division can substantially reduce the

dimension of the approximation problem, which facilitates the application of adaptive im-

portance sampling for posterior simulation in more complex models with larger numbers of

parameters. Our results indicate that the proposed methods can substantially reduce the

computational burden in econometric models like mixture GARCH models and a mixture

instrumental variables model.
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1 Introduction

Since a few decades there is considerable interest in Bayesian analysis using computer gen-

erated pseudo random draws from the posterior and predictive distribution. Markov Chain

Monte Carlo (MCMC) techniques are useful for this purpose and a popular MCMC technique

is the Metropolis-Hastings algorithm, developed by Metropolis et al. (1953) and generalized

by Hastings (1970). Several updates of this sampler are proposed in the literature, especially

the idea of adapting the proposal distribution given sampled draws.

Monte Carlo procedures based on Importance Sampling (IS), see Hammersley and Hand-

scomb (1964), are an alternative. This idea has been introduced in Bayesian inference by

Kloek and Van Dijk (1978) and is further developed by Van Dijk and Kloek (1980, 1984)

and, in particular, by Geweke (1989). According to Cappé et al. (2008), there exists re-

newed interest in Importance Sampling. This is due to its relatively simple properties which

allow for the development of parallel implementation. The increased popularity of Impor-

tance Sampling goes jointly with the development of multiple core machines and computer

clusters.

In this paper we specify a class of adaptive sampling methods for efficient and reliable

posterior and predictive simulation. The proposed methods are robust in the sense that

they can handle target distributions that exhibit non-elliptical shapes such as multimodal-

ity and skewness. These methods are especially useful for posteriors where the convergence

of alternative simulation methods is slow or even doubtful, such as high serial correlation in

Gibbs sequences that may be caused by large numbers of latent variables or non-elliptical

shapes. Importance Sampling and Gibbs sampling are not necessarily substitutes: given

that diagnostic checks can never fully guarantee that results have converged to the true

values (that is, that convergence has been reached and that no errors have been made in the

derivations and code), the use of both simulation methods that have completely different

theory and implementation can be a useful validity check. Further, an appropriate candi-

date distribution can be used to draw initial values for multiple Gibbs sequences, whereas

a sample of Gibbs draws can be used to obtain initial values for the mean and covariance

matrix in the process of constructing an approximating candidate distribution. Our pro-

posed methods make use of the novel Mixture of t by Importance Sampling and Expectation

Maximization (MitISEM) approach. This approach uses sequences of importance weighted
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steps in an Expectation Maximization algorithm in order to relatively quickly construct a

mixture of Student-t densities, which is used as an efficient and reliable candidate density

for Importance Sampling (IS) or the Metropolis-Hastings (MH) method. Next to assessing

possibly non-elliptical posterior distributions, MitISEM is particulary useful for accurately

estimating marginal and predictive likelihoods via IS.

Apart from specifying the basic approach of MitISEM, we introduce three extensions.

First, we propose a method for applying MitISEM in a sequential manner, so that the

candidate distribution for posterior simulation is cleverly updated when new data become

available. Our results show that the computational effort reduces enormously, while the

quality of the approximation remains almost unchanged, as compared with an ‘ad hoc’

procedure in which the construction of the MitISEM candidate is performed ‘from scratch’

at every moment in time. This sequential approach can be combined with a tempering

approach, which facilitates the simulation from densities with multiple modes that are far

apart. The proposed tempering method moves sequentially from a tempered target density

kernel, the target density kernel to the power of a positive number that is smaller than 1,

towards the real target density kernel. The tempered target distribution is more diffuse and

hence the probability of detecting far-away modes is higher. This tempering idea is used in

the Equi-Energy sampler, developed by Kou, Zhou and Wong (2006).

Second, we introduce a permutation-augmented MitISEM approach, for importance sam-

pling from posterior distributions in mixture models without the requirement of imposing

a priori identification restrictions on the mixture components’ parameters. As discussed

by Geweke (2007), the mixture model likelihood function is invariant with respect to per-

mutation of the components of the mixture model. If functions of interest are permutation

sensitive, as in classification applications, then interpretation of the likelihood function re-

quires valid inequality constraints. If functions of interest are permutation invariant, as in

prediction applications, then there are no such problems of interpretation. Geweke (2007)

proposes the permutation-augmented Gibbs sampler, which can be considered as an exten-

sion of the random permutation sampler of Frühwirth-Schnatter (2001). The practical im-

plementation of the idea of the permutation-augmented Gibbs sampler is that one simulates

a Gibbs sequence with total disregard for label switching or the prior’s labeling restrictions.

Only after that and only if functions of interest are permutation sensitive, then one simply

permutes the Gibbs sampler’s output so as to satisfy the labeling restrictions. We propose a

method of permutation-augmented IS, for which we extend the MitISEM approach to con-

struct an approximation to the unrestricted posterior, taking into account the permutation

structure. If m is the number of components of the mixture model, then the addition of a
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Student-t component to the candidate implies an addition of the m! equivalent permuta-

tions. Thereby, we construct a mixture of mixtures of m! Student-t components, where the

restriction is imposed that the m! permutations have equal candidate density. Intuitively

stated, we help the basic MitISEM approach by ‘telling’ it about the invariance with respect

to permutations. It should be noted that this invariance with respect to permutations is not

the only possible cause of non-elliptical shapes in a mixture model’s posterior. For example,

if the probability of one of the model’s components tends to zero, the local non-identification

of the component’s other parameters causes ridge shapes.

Third, we propose a partial MitISEM approach, which aims at approximating the

marginal and conditional posterior distributions of subsets of model parameters, rather

than the joint. This division can substantially reduce the dimension of the approximation

problem, which facilitates the application of adaptive importance sampling for posterior

simulation in more complex models with larger numbers of parameters. Approximating the

joint posterior density kernel with a mixture of Student-t distributions allows for a huge flex-

ibility of shapes. However, rarely all of this flexibility is required. It is typically enough to

use mixtures of Student-t distributions for the dependence within subsets of the parameters.

We can often divide the parameters into subsets, where the dependence between different

subsets is less complicated. Our partial MitISEM approach divides the model parameters

into ordered subsets, where the conditional candidate distributions’ means are linear com-

binations of (functions of) the parameters in previous subsets. The conditional candidate

distributions’ covariances can also be made to depend on the parameters in previous sub-

sets, by allowing the probabilities of the mixture components of the conditional candidate

distribution to differ for different ranges of values for functions of the parameters in pre-

vious subsets. The partial MitISEM approach is a way to provide a usable approximation

to the posterior, while preventing problems such as numerical issues with specifying huge

covariance matrices for a joint candidate distribution – problems that have led researchers

to conclude that IS necessarily suffers from a ‘curse of dimensionality’.

Several approaches of adaptive sampling using mixtures exist in the literature. Keith et

al. (2008) developed adaptive independence samplers by minimizing the Kullback-Leibler

(KL) divergence in order to provide the best candidate density, which consists of a mix-

ture of Gaussian densities. The minimization of the KL-divergence is done by applying the

EM algorithm of Dempster et al. (1977) and the number of mixture components is selected

through information criteria like AIC (Akaike (1974)), BIC (Schwarz (1978)) or DIC (Gel-

man et al. (2003)). Our basic approach is a ‘bottom up’ procedure that starts with one

Student-t distribution (instead of a Gaussian distribution) and Student-t components are
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added iteratively until a certain stop criterion is met. We emphasize that the IS-weighted

version of the EM algorithm is applied in order to use all candidate draws without requiring

the Metropolis-Hastings algorithm to transform the candidate draws into a set of posterior

draws. The advantages are that we do not require a burn-in sample, that the use of all

candidate draws helps to prevent numerical problems with estimating candidate covariance

matrices – also draws with relatively small, but positive importance weights are helpful for

this purpose – and that the use of all candidate draws may lead to a better approximation.

Cappé et al. (2008) and Cornuet et al. (2009) also use IS-weights in the EM algorithm with

a mixture of Student-t densities as candidate density. Cappé et al. (2008) developed the

M-PMC (Mixture Population Monte Carlo) algorithm, which is an adaptive algorithm that

iteratively updates both the weights and component parameters of a mixture importance

sampling density. An important difference between Cappé et al. (2008) (and also Cornuet

et al. (2009)) and the present paper is the choice of the number of mixture components and

the starting values of the candidate mixture’s Student-t components’ means and covariances

in the EM optimization procedure. Regarding the first issue, in earlier papers the number

of mixture components is chosen a priori, where we let the algorithm choose the required

number of components. Second, we choose the starting values based on the draws that

correspond to the highest IS-weights for the previous mixture of Student-t candidate in the

algorithm, where Cappé et al. (2008) do not provide a strategy for choosing starting values.

Although the EM procedure is guaranteed to converge to a local optimum, the choice of

the starting values may still be crucial, given that the KL divergence between target and

candidate (as a function of the candidate mixture’s means, covariances, degrees of freedom

and component weights) is a highly non-elliptical, multimodal function. Moreover, we pro-

vide extensions (sequential, tempered, permutation-augmented and partial MitISEM) that

facilitate simulation for specific applications and for particular statistical and econometric

models.

A final remark considering the literature regards the Adaptive Mixture of t (AdMit)

approach of Hoogerheide, Kaashoek and Van Dijk (2007). Whereas the idea behind AdMit

and MitISEM is the same, i.e. iteratively constructing an approximation of a target distri-

bution by a mixture of Student-t distributions, there are three substantial differences. First,

AdMit aims at minimizing the variance of the IS estimator directly, whereas MitISEM aims

at this goal indirectly by minimizing the Kullback-Leibler divergence. As a result, AdMit

optimizes the mixture component weights using a non-linear optimization procedure that

requires considerable computational effort. Second, in the AdMit method, means and covari-

ance matrices of the candidate components are chosen heuristically and are never updated
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when additional components are added to the mixture, whereas in MitISEM all mixture pa-

rameters are optimized jointly by means of the relatively quick EM algorithm. This implies

a large reduction of the computing time in the approximation procedure, and is expected

to lead to a better candidate in most applications. Third, AdMit requires the joint target

density kernel, whereas MitISEM requires candidate draws and importance weights. This

implies that AdMit can not be applied partially to the marginal and conditional posterior

distributions of subsets of parameters, whereas we propose a partial MitISEM approach.

One relative advantage of the AdMit approach is the step in which the importance weight

function is maximized with respect to the parameter vector, which may lead to finding

relevant areas of the parameter space that were ‘missed’ by all draws from the previous

candidate. We intend to investigate the use of such an AdMit step within MitISEM in

further research.

The outline of this paper is as follows. In section 2 we introduce the MitISEM method.

Section 2 also provides three subsections of applications in which MitISEM is used for

estimating posterior moments, forecasting Value at Risk, and estimating model probabilities.

Section 3 introduces the sequential MitISEM method, and includes a subsection on the

tempering method. Section 4 introduces the partial MitISEM method. Section 5 concludes.

The appendix provides the derivations of the IS-weighted EM methods.

2 Mixture of t by Importance Sampling and Expecta-

tion Maximization (MitISEM)

If one uses Importance Sampling or the Metropolis-Hastings algorithm to conduct posterior

analysis, a key issue is to find a candidate density which approximates the target distribu-

tion. This can be quite difficult if the target density is not elliptical. This paper proposes

to specify the candidate distribution as a mixture of Student-t distributions. According

to Hoogerheide et al. (2007), the usage of mixtures of Student-t distributions has several

advantages. First, they can provide an accurate approximation to a wide variety of target

densities. For example, they can exhibit substantial skewness or irregularly curved contours

such as multimodality. Zeevi and Meir (1997) show that under certain conditions any den-

sity function may be approximated to arbitrary accuracy by a convex combination of ‘basis’

densities; the mixture of Student-t densities falls within their framework. Second, simulation

from the Student-t distribution and evaluation of the Student-t density are performed easily

and efficiently. Third, Student-t distributions have fatter tails than normal distributions,

which reduces the risk that the tails of the candidate density are thinner than those of the
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target distribution. Fourth, a mixture of t approximation to a target distribution can be

constructed in a quick, automatic, reliable manner by our novel procedure.

We will use the notation f(θ) for the target density kernel of θ, the k-dimensional vector

of interest. f(θ) is typically a posterior density kernel, but it can also be a density kernel of

observable variables or a density kernel of both parameters and observable variables. g(θ)

is the candidate density, a mixture of H Student-t densities:

g(θ) = g(θ|ζ) =
H∑

h=1

ηh tk(θ|µh,Σh, νh), (1)

where ζ is the set of modes µh, scale matrices Σh, degrees of freedom νh, and mixing

probabilities ηh (h = 1, . . . , H) of the k-dimensional Student-t components with density:

tk(θ|µh,Σh, νh) =
Γ
(
νh+k

2

)
Γ
(
νh
2

)
(πνh)k/2

|Σh|−1/2

(
1 +

(θ − µh)
′
Σ−1

h (θ − µh)

νh

)−(k+νh)/2

. (2)

Here Σh is positive definite, ηh ≥ 0 and
∑H

h=1 ηh = 1. We further restrict νh such that

νh ≥ 1.

First, assume that the number of components H is given. In the sequel of this section

we will propose a ‘bottom up’ procedure that starts with one Student-t distribution and

which iteratively adds Student-t components until a certain stop criterion is met. The

aim is to choose the candidate mixture density g(θ) in such a way that it provides a good

approximation of the target density f̃(θ) of which f(θ) is a kernel. We do this by choosing ζ

such that it minimizes the Kullback-Leibler divergence (or Cross-entropy distance) (Kullback

and Leibler (1951)), which is defined as

D1(f̃ → g) =

∫
f̃(θ) log

f̃(θ)

g(θ|ζ)
dθ. (3)

This is obviously equivalent with minimizing

D1(f → g) =

∫
f(θ) log

f(θ)

g(θ|ζ)
dθ. (4)

as long as the same kernel f of the target density f̃ is used throughout the minimization.

Since

D1(f → g) =

∫
f(θ) log

f(θ)

g(θ|ζ)
dθ =

∫
f(θ) log f(θ) dθ −

∫
f(θ) log g(θ|ζ) dθ, (5)

where only the second term on the right-hand side of (5) depends on ζ, this amounts to

maximizing ∫
f(θ) log g(θ|ζ) dθ = Eθ∼f(θ)[log g(θ|ζ)] = (6)∫

g0(θ)
f(θ)

g0(θ)
log g(θ|ζ) dθ = Eθ∼g0(θ)

[
f(θ)

g0(θ)
log g(θ|ζ)

]
, (7)
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where g0(θ) is a given candidate density that has been obtained in a previous step. For

H = 1 the density g0(θ) is an initial candidate distribution, such as a Student-t distribution

around the posterior mode with scale matrix equal to minus the inverse Hessian of the

log-posterior at the mode, or an adapted version thereof. For H ≥ 2, g0 is a mixture of

H − 1 Student-t components, that has been obtained in the previous step of the ‘bottom

up’ construction procedure.

We use an Expectation-Maximization (EM) algorithm for minimizing the stochastic

counterpart of (7) in order to find

ζ∗ = argmax
ζ

1

N

N∑
i=1

W i log g(θi|ζ) with W i =
f(θi)

g0(θi)
,

where θi (i = 1, 2, . . . , N) are independent draws from g0. Note that both the θi and W i

are given the during the optimization; θi and W i (i = 1, 2, . . . , N) do not depend on ζ. We

emphasize that the importance weighted version of the EM algorithm is applied, rather than

minimizing the stochastic counterpart of (6) by a ‘regular’ EM algorithm, in order to use

all candidate draws without requiring the Metropolis-Hastings algorithm to transform the

candidate draws into a set of posterior draws. This has three advantages. First, we do not

require a burn-in sample. Second, the use of all candidate draws θi (i = 1, 2, . . . , N) helps

to prevent numerical problems with estimating candidate covariance matrices; also draws

with relatively small, but positive importance weights are helpful for this purpose. Third,

the use of all candidate draws may lead to a better approximation.

The EM algorithm (Dempster et al. (1977)) is based on the idea that a complex model

for some observable ‘data’ θ with parameters ζ can be formulated in a simpler form with

latent data θ̃ in addition to θ and ζ. If the latent data θ̃ were observed, the computation of

the Maximum Likelihood estimator of θ would be relatively straightforward. Each iteration

L of the EM algorithm consists of two (iterative) steps, the Expectation and Maximization

step. The first (Expectation) step takes the expectation of the log-likelihood function with

respect to the latent data θ̃ (given the parameter values ζ(L−1) from the previous iteration).

The second (Maximization) step maximizes this expected log-likelihood with respect to the

parameters.

In our situation we maximize the weighted log-likelihood

1

N

N∑
i=1

W i log g(θi|ζ)

where g(.|ζ) is the mixture of Student-t densities (1). The mixture of Student-t densities

(1) for θi is equivalent with the specification

θi ∼ N(µh, w
i
hΣh) if zih = 1,

8



where zi is a latent H-dimensional vector indicating from which Student-t component the

observation θi stems: if θi stems from component h, then zih = 1, zij = 0 for j ̸= h;

Pr[zi = eh] = ηh with eh the h-th column of the identity matrix; wi
h has the Inverse-

Gamma distribution IG(νh/2, νh/2). For a more extensive explanation of this continuous

scale mixing representation of (mixtures of) Student-t distributions we refer to Peel and

McLachlan (2000). Here we have latent ‘data’ θ̃i (i = 1, . . . , N)

θ̃i = {zih, wi
h|h = 1, . . . , H}

and

log p(θi, wi, zi|ζ) = log p(θi|wi, zi, ζ) + log p(wi|ζ) + log p(zi|ζ)

=
H∑

h=1

zih log
[
pdfN(µh,w

i
hΣh)

(θi)
]
+

H∑
h=1

log pdfIG(νh/2,νh/2)
(wi

h) +
H∑

h=1

zih log(ηh)

=
H∑

h=1

zih

{
−k
2
log(2π)− 1

2
log |Σh| −

k

2
log(wi

h)−
1

2

(θi − µh)
′(Σh)

−1(θi − µh)

wi
h

}

+
H∑

h=1

{
νh
2
log
(νh
2

)
−
(νh
2

− 1
)
log(wi

h)−
νh
2

1

wi
h

− log
(
Γ
(νh
2

))}

+
H∑

h=1

zih log(ηh) (8)

where wi and zi are a priori independent. The expressions of the latent variables wi and zi

that appear in terms which also involve the parameters ζ to be optimized are zih,
zih
wi

h
, logwi

h,

and 1
wi

h
. The conditional expectations given θi and ζ = ζ(L−1), the optimal parameters in

the previous EM iteration, are as follows:

z̃ih ≡ E
[
zih
∣∣θi, ζ = ζ(L−1)

]
=

t(θi|µh,Σh, νh) ηh∑H
j=1 t(θ

i|µj,Σj, νj) ηj
, (9)

z̃/w
i

h ≡ E

[
zih
wi

h

∣∣∣∣ θi, ζ = ζ(L−1)

]
= z̃ih

k + νh
ρih + νh

, (10)

ξih ≡ E
[
logwi

h

∣∣θi, ζ = ζ(L−1)
]
=

=

[
log

(
ρih + νh

2

)
− ψ

(
k + νh

2

)]
z̃ih +

[
log
(νh
2

)
− ψ

(νh
2

)]
(1− z̃ih), (11)

δih ≡ E

[
1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
=

k + νh
ρih + νh

z̃ih + (1− z̃ih), (12)

with ρih = (θi−µh)
′Σ−1

h (θi−µh), ψ(.) the digamma function (the derivative of the logarithm
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of the gamma function log Γ(.)), and all parameters µh,Σh, νh, ηh elements of ζ(L−1). For

the derivations of these expectations we refer to the appendix.

Define log p̃(θi, wi, zi|ζ) as the result of substituting the expectations (9)-(12) into log p(θi, wi, zi|ζ)
in (8). The Maximization step amounts to computing the ζ that maximizes

ζ(L) = argmax
ζ

1

N

N∑
i=1

W i log p̃(θi, wi, zi|ζ).

Using the analogy with Maximum Likelihood estimation for the Seemingly Unrelated Re-

gression model with Gaussian errors (for the k elements of θi) and the same ‘regressor’ (a

constant term) in each equation, in which case the Ordinary Least Squares (OLS) estimator

provides the Maximum Likelihood Estimator, and Maximum Likelihood estimation for the

multinomial distribution, it is easily derived that ζ(L) consists of:

µ
(L)
h =

[
N∑
i=1

Wi z̃/w
i

h

]−1 [ N∑
i=1

Wi z̃/w
i

h θ
i

]
, (13)

Σ̂
(L)
h =

∑N
i=1Wi z̃/w

i

h (θi − µ
(L)
h )(θi − µ

(L)
h )′∑N

i=1Wi z̃ih
, (14)

η
(L)
h =

∑N
i=1Wi z̃

i
h∑N

i=1Wi

. (15)

Further, ν
(L)
h is solved from the first order condition of νh:

−ψ(νh/2) + log(νh/2) + 1−
∑N

i=1Wi ξ
i
h∑N

i=1Wi

−
∑N

i=1Wi δ
i
h∑N

i=1Wi

= 0. (16)

Cappé et al. (2008) only update the expectations and covariance structures of the Student-t

distributions and not the degrees of freedom, because there is no closed-form solution for

the latter. We propose to optimize also the degrees of freedom parameter νh during the EM

procedure for three reasons. First, the larger flexibility may lead to a better approximation

of the target distribution. Second, solving νh from (16) requires only a one-dimensional

root finder, which requires little computation time. Moreover, 1−
∑N

i=1 Wi ξ
i
h∑N

i=1 Wi
−

∑N
i=1 Wi δ

i
h∑N

i=1 Wi
is

constant with respect to νh, so that it only has to be evaluated once in the process of solv-

ing the equation. Third, the resulting values of νh (h = 1, . . . , H) may provide information

on the shape of the target distribution (e.g. whether the kurtosis is small, moderate or large).

We now discuss two remaining issues: (1) how to choose the number of components H;

(2) how to specify the initial values in the EM algorithm. In order to deal with both issues,
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we use a ‘bottom up’ procedure that starts with one Student-t distribution and which iter-

atively adds Student-t components until a certain stop criterion is met:

Algorithm 1. The MitISEM approach for obtaining an approximation to a target den-

sity:

(0) Initialization: Simulate draws θ1, . . . , θN from the naive proposal density gnaive where

gnaive denotes a Student-t distribution with mode and scale matrix equal to the target

distribution’s mode and minus the inverse Hessian of the log-target density kernel

evaluated at the mode.

(1) Adaptation: Estimate the target distribution’s mean and covariance matrix using

IS with the draws θ1, . . . , θN from gnaive. Use these estimates as the mode and scale

matrix of Student-t distribution gadaptive. Draw a sample θ1, . . . , θN from this adaptive

Student-t distribution g0 = gadaptive, and compute the IS weights for this sample.

(2) Apply the IS-weighted EM algorithm given the latest IS weights and the drawn

sample of step 1. The output consists of the new candidate density g with optimized

ζ, the set of µh,Σh, νh, ηh (h = 1, . . . , H). Draw a new sample θ1, . . . , θN from this

proposal density and compute corresponding IS weights.

(3) Iterate on the number of mixture components: Given the current mixture of H

components with corresponding µh,Σh, νh and ηh (h = 1, . . . , H), take x% of the sam-

ple θ1, . . . , θN that correspond to the highest IS weights. Construct with these draws

and IS weights a new mode µH+1 and scale matrix ΣH+1 which are starting values for

the additional component in de mixture candidate density. The reason behind this

choice is that the new component is meant to cover a region of the parameter space

in which the previous candidate mixture had relatively too little probability mass.

Starting values for ηH+1 and νH+1 are at each iteration set at 0.10 and 1, respectively.

Obvious starting values for µh, Σh and νh (h = 1, . . . , H) are the optimal values in

the mixture of H components, while ηh is 0.90 times the previously optimal value.

Given the latest IS weights and the drawn sample from the current mixture of H com-

ponents, apply the IS-weighted EM algorithm to optimize each mixture component

µh,Σh, νh and ηh with h = 1, . . . , H + 1. Draw a new sample from the mixture of

H + 1 components and compute corresponding IS weights.

(4) Evaluate the IS weights by computing the Coefficient of Variation (C.o.V.), i.e. the

standard deviation of the IS weights divided by their mean. Stop the algorithm when

this coefficient has converged. Otherwise return to step 3.
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Step (1) can be seen as an intermediate step which quickly tries to improve the initial

candidate distribution g0, before calling the IS-weighted EM algorithm. If during the EM

algorithm, a scale matrix Σh of a Student-t component (with very small weight ηh) becomes

(nearly) singular, then this h-th component is removed from the mixture. We emphasize

that in the iteration on the number of mixture components, the EM algorithm is applied

to optimize all components. This is a qualitative improvement compared to the AdMit

approach of Hoogerheide et al. (2007), which fixes the Student-t densities once they are

formed.

There are still two strategic issues to be discussed about the MitISEM algorithm. The

first issue relates to the following question: what is an efficient simulation method? Is

this a simulation method that, given a certain amount of computing time, provides an

estimate of a quantity of interest with the highest possible precision? Or is this a simulation

method that, given a certain required precision, needs the shortest computing time. The

optimal number of Student-t components may depend on the available computing time or

the required precision. The more computing time is available, or the higher the required

precision, the more rewarding a large ‘investment’ in an accurate approximation may be.

Moreover, in order to choose the optimal number of Student-t components, we need to

know the quantity of interest. That is, for a particular quantity of interest and a particular

desired precision (or available amount of computing time), one could attempt to compute

an optimal allocation of computing time over the construction of the candidate and the

subsequential use in IS or the MH algorithm. We intend to investigate this issue in future

research. In the current paper, we propose a heuristic procedure that continues adding

Student-t components until the approximation’s quality ‘hardly’ improves. We define the

latter as a relative change in the C.o.V. of the IS weights that is smaller than 10%.

We discuss examples in which the posterior distribution is itself approximated, which

seems a reasonable choice when we are interested in quantities such as the posterior mean,

median or covariance. For the specific application of multi-step-ahead forecasting Value at

Risk (VaR), we approximate the optimal importance density of Geweke (1989). In the latter

case, one may monitor the Numerical Standard Error (NSE) of the estimated VaR, as an

alternative to the C.o.V. of IS weights.

Second, although the EM procedure is guaranteed to converge to a local optimum –

the (weighted) log-likelihood is a non-decreasing function of the number of EM iterations

– the choice of the starting values may still be crucial, given that the KL divergence be-

tween target and candidate (as a function of the candidate mixture’s means, covariances,

degrees of freedom and component weights) is a highly non-elliptical, multimodal function.

12



MitISEM uses x% of the sample θ1, . . . , θN that correspond to the highest IS weights, in

order to compute starting values for the mode µH+1 and scale matrix ΣH+1 of the additional

component in de mixture candidate density. The optimal choice of x% depends on the par-

ticular target distribution and the current candidate mixture of H Student-t components.

Therefore, we apply the EM algorithm with three different starting values (based on 1%,

5% or 10% of the draws θ1, . . . , θN), and continue the algorithm with the resulting mixture

of H +1 Student-t components that yields the lowest C.o.V. value of the IS weights among

the three approaches.

The results in the present paper suggest that the current implementation of MitISEM is

successful at constructing approximations that are useful candidate distributions. It should

be stressed that we do not require the globally optimal candidate distribution: it suffices

to have a ‘good’ approximation that makes a trade-off between the computing time of con-

structing a candidate distribution and the efficiency during the subsequential simulation.

In the following subsections the MitISEM approach is applied in mixture GARCH mod-

els, for the estimation of posterior moments, mult-step-ahead prediction of Value at Risk,

and the analysis of model probabilities.

2.1 Application I: analysis of a non-elliptical posterior distribu-

tion in a mixture GARCH(1,1) model

In this subsection the MitISEM approach is applied to the two-component Gaussian Mixture

GARCH (1,1) model of Auśın and Galeano (2007). For the Bayesian estimation of this

model, Auśın and Galeano (2007) propose a Griddy-Gibbs sampler (Ritter and Tanner

(1992)), since the recursive structure of the likelihood in GARCH-type models implies that

a regular Gibbs sampling approach is not feasible. However, the Griddy-Gibbs sampler is

known to be very slow. We use the MH sampler and IS with a candidate density resulting

from the MitISEM algorithm, and compare the performance of the MitISEM candidate

density with a naive and an adaptive Student-t candidate density.

The two-component Gaussian mixture GARCH(1,1) model for the returns yt (t =

1, 2, . . . , T ) is given by

yt = µ+
√
ht εt, (17)

ht = ω + α(yt−1 − µ)2 + βht−1, (18)

εt ∼

{
N(0, σ2) with probability ρ,

N(0, σ2/λ) with probability 1− ρ,
(19)
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Figure 1: S&P 500 log-returns (100 × change of log-index): daily observations from 1998− 2002.

with ht the conditional variance of yt given the information set It−1 = {yt−1, yt−2, yt−3, . . .}.
In addition, 0 < λ < 1, and σ2 ≡ 1/(ρ + (1 − ρ)/λ) so that var(εt) = 1; h0 is treated as

a known constant. We restrict ω > 0, α ≥ 0 and β ≥ 0 to ensure positivity of ht. We

follow Auśın and Galeano (2007) by imposing the prior restriction 0.5 < λ < 1, so that it is

ensured that the state with smaller variance has larger probability than the state with larger

variance. We follow Auśın and Galeano (2007) also in specifying flat priors for the model

parameters. Moreover, we truncate ω and µ such that these have proper (non-informative)

priors. For the parameter vector θ = (ρ, λ, µ, ω, γ, α, β) of dimension k = 7 we have a

uniform prior on [0.5, 1]× [0, 1]× [−1, 1]× [0, 1]× [−1, 1]× [0, 1]× [0, 1] with α+β < 1 which

implies covariance stationarity of ht.

The returns yt are taken from the S&P 500 index. From this index we use daily obser-

vations yt (t = 1, . . . , T ) on the log return (100 times the change of the logarithm of the

closing price) from January 2 1998 to December 26 2002. We chose this pre-crisis period,

since the performance of the model was better than during the recent crisis. Therefore, this

period is a plausible choice for this illustrative example. Figure 1 shows the returns and

their corresponding descriptive statistics. This shows clearly some stylized facts of equity

returns’ distributions: non-normality (excess kurtosis) and volatility clustering.

Posterior means of the model parameters are estimated by using IS and the independence

chain MH algorithm. In more detail we use three candidate distributions based on Student-

t densities: the mixture of Student-t densities resulting from the MitISEM algorithm, an

‘adaptive’ Student-t distribution and a ‘naive’ Student-t distribution. The adaptive candi-

date is in fact the distribution that is produced in step 1 of the MitISEM algorithm, whereas

the ‘naive’ density simply uses the mode and the scale matrix estimated from the Hessian.

The top left panel of Figure 2 shows the non-elliptical shapes of the posterior density.

Contour lines are plotted for (λ, ρ), where the remaining parameters are fixed at poste-

rior means (estimated by IS). A non-identification issue arises if ρ → 1, because in this
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Figure 2: Contour plots of the Gaussian Mixture GARCH (1,1) model applied to S&P 500 data. All panels

show plots of the conditional (posterior/candidate) density of (ρ, λ) given (µ, ω, α, β) equal to the posterior

mean (estimated by IS). The top panels depict the conditional posterior density and the candidate density

contours resulting from MitISEM. The bottom panels show contours of the ‘adaptive’ and ‘naive’ candidate

densities.

case λ becomes unidentified since the model does not contain a regime with larger variance

anymore. Then 1/λ, the ratio of the large and small variance, can take a wide range of

values. The remaining panels show contours of the candidate density implied by MitISEM,

the ‘adaptive’ and the ‘naive’ candidate distribution. MitISEM has produced a candidate

density that covers all the relevant (non-elliptically shaped) areas of the posterior target dis-

tribution, whereas the adaptive and naive candidates may ‘miss’ relevant areas, for example

around points (ρ = 0.5, λ = 0.2), (ρ = 0.9, λ = 0.5) or (ρ = 0.99, λ = 0.01).

Table 1 shows posterior means estimated by the IS and MH algorithms. For both

methods, we simulate 10000 draws. For the MH approach, we take an burn-in sample of

1000 draws. Numerical standard errors (NSE) for IS and the MH algorithm are obtained by

repeating the procedure 100 times. The main result from Table 1 is that MitISEM clearly

outperforms the other candidate densities, irrespective whether IS or the MH method is

used, since the NSE values are (much) smaller than the corresponding values implied by the

Adaptive and Naive candidate densities. Regarding IS, an additional column is included
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in the table: here we combine MitISEM-based IS with the variance reduction technique

of antithetic sampling, where we simulate half the number of draws from the MitISEM

candidate, and for each draw the ‘mirror image’ within the Student-t component (at the

other side of the candidate Student-t component’s mode) is added. For some parameters

this leads to an improvement of the NSE, indicating that the combination of MitISEM-

based IS with well-known variance reduction techniques such as antithetic sampling may

be worthwhile. However, for ρ and λ no improvement is observed, reflecting that, roughly

stated, the other side of the Student-t component may still be in a nearby subdomain of

the whole parameter space. The latter phenomenon makes the effect of antithetic sampling

much less clear than under symmetric candidate distributions. We leave the combination

of MitISEM with variance reduction techniques such as antithetic sampling and control

variates as a topic for further research.

We end this subsection with a remark on the computing time. Given the candidate

density, the IS or MH method using the MitISEM candidate costs hardly more computing

time than under a Student-t candidate. That is, the difference in computing time between

evaluating and simulating from a mixture of Student-t and a Student-t density is small, as

compared with the computing time required for the evaluation of the target density kernel.

However, the construction of the MitISEM candidate necessarily requires more computing

time than the naive and adaptive Student-t candidates, since the computations for these

Student-t candidates are merely the initial steps of the MitISEM procedure.

Here, the construction of the MitISEM candidate took less than a minute (on a common

laptop processor), whereas the simulation of 10000 draws requires approximately 6 seconds.

From this it is clear that the MitISEM approach is especially useful if one desires estimates

with a high precision. In the next subsection we will consider the Bayesian estimation of

Value at Risk, where we will take a closer look at the computing time.
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Table 1: Estimated posterior means and NSE’s, obtained by using three different candidate densities for IS

and the independence chain MH method. NSE values of the IS method and the MH-algorithm are obtained

by repeating the procedure 100 times. Maximum Likelihood estimates are provided in the first panel of the

table.

Independence chain MH estimates

MitISEM Adaptive Naive

ML est. mean NSE · 100 mean NSE · 100 mean NSE · 100
ρ 0.92 0.81 0.20 0.82 0.97 0.82 6.21

λ 0.23 0.28 0.09 0.28 0.36 0.29 1.35

µ 0.04 0.04 0.07 0.04 0.22 0.04 0.95

ω 0.06 0.09 0.12 0.08 0.27 0.09 1.31

α 0.07 0.08 0.04 0.08 0.15 0.08 0.45

β 0.90 0.87 0.06 0.87 0.23 0.86 1.05

IS estimates

MitISEM MitISEM antithetic Adaptive Naive

mean NSE · 100 mean NSE · 100 mean NSE · 100 mean NSE · 100
ρ 0.79 0.16 0.79 0.17 0.79 0.74 0.79 3.44

λ 0.28 0.08 0.28 0.08 0.28 0.15 0.28 0.66

µ 0.04 0.04 0.04 0.02 0.04 0.09 0.04 0.37

ω 0.09 0.07 0.09 0.05 0.09 0.12 0.09 0.57

α 0.08 0.03 0.08 0.02 0.08 0.05 0.08 0.28

β 0.86 0.06 0.87 0.04 0.86 0.11 0.86 0.51

2.2 Application II: efficient Bayesian forecasting of Value at Risk

In the previous subsection we illustrated that local non-identification of model parameters

can cause non-elliptical shapes of the target distribution. In this subsection we will illustrate

that aiming at the optimal importance density for a particular (tail-related) quantity of

interest may be another cause for non-elliptical shapes of the target distribution.

A basic Bayesian procedure to multi-step-ahead prediction of Value at Risk (VaR) is

as follows. Given draws of the posterior density, obtained by for example an independence

chain MH algorithm, one simulates possible future paths of the returns and takes the quan-

tile of interest of the simulated future returns. We label this procedure the ‘direct approach’.

Hoogerheide and Van Dijk (2010) propose an indirect way to compute the multi-step-ahead

VaR. They developed the approach of Quick Evaluation of Risk using Mixture of t approxi-

mations (QERMit), where first the optimal importance density, derived by Geweke (1989),

qopt(·) of future returns and model parameters is approximated by a ‘hybrid’ mixture of

densities q̂opt(·). After that, this approximation q̂opt(·) is used as a candidate density in
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Importance Sampling.

The optimal importance distribution has 50% of the future returns below the VaR and

50% above the VaR; that is, 50% of the draws should consist of high losses. Therefore the

optimal importance density qopt(·) is typically multimodal, even if the posterior is elliptically

shaped (as is the case in the Student-t GARCH model in this subsection), since it has one

mode near the mode of the future paths’ distribution (and the posterior mode) and at least

one mode in the ‘high loss region’. We refer to Hoogerheide and Van Dijk (2010) for more

details.

Following Hoogerheide and Van Dijk (2010), the step-by-step procedure to estimate the

τ -step ahead 100 α% VaR by the QERMit approach is as follows 1:

(Step 1) Construct an approximation of the optimal importance density:

(Step 1a) Use the MitISEM algorithm to obtain a mixture of Student-t densities q1,Mit(θ)

that approximates the posterior density.

(Step 1b) Simulate a set of draws θi (i = 1, . . . , N) from the posterior distribution using

the independence chain MH algorithm with candidate q1,Mit(θ). Simulate cor-

responding future paths y∗i ≡ {yiT+1, . . . , y
i
T+τ} (i = 1, . . . , N) from the model

given parameter values θi and historical values y ≡ {y1, . . . , yT}, i.e. from the

density p(y∗|θi, y). Compute a preliminary estimate V̂ aRprelim as the 100 α%

quantile of the profit/loss values PL(y∗i)(i = 1, . . . , N).

(Step 1c) Use again the MitISEM algorithm to obtain a mixture of Student-t densities

q2,Mit(θ, y
∗) that approximates the conditional joint density of parameters θ and

future returns y∗ given that PL(y∗) < V̂ aRprelim.

(Step 2) Estimate the VaR using Importance Sampling with the following mixture candidate

density for θ, y∗:

q̂opt(θ, y
∗) = 0.5 q1,Mit(θ)p(y

∗|θi, y) + 0.5 q2,Mit(θ, y
∗). (20)

The first term in the candidate (20) is caused by the fact that 50% of the draws corresponding

to the ‘whole’ distribution of (θ, y∗) can be generated more efficiently by using the density

p(y∗|θi, y) that is specified by the model and approximating merely the posterior q1,Mit(θ)

1There is obviously a crucial difference between the method of Hoogerheide and Van Dijk (2010) and the

method described in this paper: the mixture of Student-t densities is obtained by AdMit in Hoogerheide

and Van Dijk (2010), whereas we obviously use the MitISEM algorithm
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than by approximating the joint distribution of (θ, y∗)2. Further, the profit/loss function

equals simply the sum of all returns y∗i in this paper.

We apply the QERMit approach by considering the 10-day ahead 99% VaR forecast

for the S&P 500 index. For estimation we use the same pre-crisis data as in the previous

subsection. We use the GARCH model (Engle (1982), Bollerslev (1986)) with Student-t

innovations:

yt = µ+ ut (21)

ut = εt(ρht)
1/2 (22)

εt = Student-t(ν) (23)

ρ ≡ ν − 2

ν
(24)

ht = α0 + α1u
2
t−1 + βht−1 (25)

with Student-t(ν) the standard Student-t distribution with ν degrees of freedom and variance
ν−2
ν
. The reasons for choosing this GARCH(1,1) model with Student-t errors are that it is a

popular model among practitioners and moreover that its posterior is elliptically shaped, so

that our example illustrates that flexible candidate distributions can also be useful in cases

with elliptically shaped posteriors. Non-informative priors are specified for all parameters;

a proper non-informative prior is used for ν to avoid an improper posterior density; see

Bauwens and Lubrano (1998). The factor ρ ensures that ht is the conditional variance of yt.

We now compare the results of the QERMit method with the ‘direct approach’ explained

at the start of this subsection. Table 2 shows simulation results. The ‘investment’ of

computing time into the construction of a candidate density for IS in case of the QERMit

approach is obviously larger than for the direct approach. However, this is ‘profitable’ as

the NSE of the estimated VaR – based on 10000 draws – is much smaller than the NSE

of the estimator using the direct approach. As the table shows, if one wants to compute

an estimate of the VaR with a precision of 1 digit with 95% confidence, (1.96 NSE < 0.05)

one needs four times more draws in the ‘direct approach’ than using the QERMit approach.

This corresponds to almost eight minutes for the first approach, whereas QERMit needs

only three minutes for the same precision. That is, the computational gain of QERMit

is equal to 2.64 (= 477/181). However, when one requires a higher precision this ratio

will tend to 4.11 (= 452/110), since the ‘investing time’ of constructing the candidate will

become relatively negligible. To summarize, if one needs a precise Bayesian forecast of a

2For small values of 100 (1− α)% (like the 1% or 5% percentile), the ‘whole’ distribution is close to the

part of the distribution that does not correspond to high losses. Therefore we simulate 50% of the draws

from the ‘whole’ distribution.

19



multi-step-ahead VaR, then the investment of computing time in an appropriate candidate

distribution – (20) with two mixtures of Student-t distributions constructed by MitISEM –

is very profitable, as also shown by Figure 3.

Table 2: Estimates of 10-day ahead 99 % VaR forecast for S&P500 based on the Student-t GARCH model.

Daily data are used from 1998 - 2002.

‘Direct’ MitISEM approach QERMit approach

MH-algorithm (mixt of Student-t cand) Adaptive Importance Sampling

for parameter draws + direct sampling using a mixture

of future returns paths approximation of the optimal

given parameter draws candidate distribution

estimate (NSE) estimate (NSE)

99 % VaR -10.62% 0.24% -10.89% 0.12%

total time 30.3 s 76.4 s

time construction candidate 25 s 71 s

time sampling 5.3 s 5.4 s

draws 10000 10000

required for % VaR estimate

with 1 digit of precision

(with 95 % confidence)

- number of draws 852948 203574

- computing time 477 s (= 7 min. 57s) 181 s (= 3 min. 1s)
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Figure 3: Precision (1/var) of estimated VaR as a function of the amount of computing time for the ‘direct

approach’ (green line), and the QERMit approach (steepest, red line). The horizontal blue line corresponds

to a precision of 1 digit (1.96 NSE ≤ 0.05).
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2.3 Application III: accurate estimation of posterior model prob-

abilities in case of non-elliptically shaped posteriors

In this subsection we compare the posterior model probabilities of two extensions of the

Gaussian Mixture GARCH (1,1) model (17)-(19), the Gaussian Mixture GJR GARCH(1,1)

and the Gaussian Mixture EGARCH(1,1) model. In these models, equation (18) is replaced

by the GJR specification proposed by Glosten, Jaganathan and Runkle (1993)

ht = ω + α(yt−1 − µ)2 + γ(yt−1 − µ)2I[yt − µ < 0] + βht−1, (26)

or by the EGARCH specification introduced by Nelson (1990)

log(ht) = ω + γ
yt−1 − µ√

ht−1

+ α

(
|yt−1 − µ|√

ht−1

− E|yt−1 − µ|√
ht−1

)
+ β log(ht−1). (27)

Both models aim at capturing the ‘leverage-effect’, i.e. that an unexpected negative shock

in the asset price boosts volatility more up than a positive shock of the same magnitude.

This effect is discovered by Black (1976) and confirmed by findings of Nelson (1990) and

Schwert (1990).

We have no a priori preference for one particular model, so that the posterior odds ratio

is equal to the Bayes factor, the ratio of the marginal likelihoods of both models, whereas

the marginal likelihood of model M1 is given by

p(y|M1) =

∫
p(y|θ1,M1)p(θ1|M1)dθ1 (28)

where p(y|θ1,M1) is the likelihood of the model and p(θ1|M1) the exact prior density of the

parameters θ1 in model M1. However, since we use flat priors for the parameters of both

models, we can not directly use marginal likelihoods, due to Bartlett’s paradox (Bartlett

(1957)). In order to get reasonable model probabilities, we compute the predictive likelihood

of both models. Eklund and Karlsson (2007) show that the sensitivity of model probabilities

to the prior choice can be handled using predictive likelihoods and summarize alternative

ways to specify and calculate the predictive likelihood. We compute the predictive likelihood

as follows. By splitting the data y = (y1, . . . yT ) into y
∗ = (y1, . . . ym) and ỹ = (ym+1, . . . yT ),

the predictive likelihood of model M1 is given by:

p(ỹ|y∗,M1) =

∫
p(ỹ|θ1, y∗,M1)p(θ1|y∗,M1)dθ1, (29)

which is actually the marginal likelihood if we consider ỹ as ‘the data’ and p(θ1|y∗,M1),

the exact posterior density after observing y∗, as the prior. Using Bayes’ rule for this exact

posterior density p(θ1|y∗,M1) and substituting into (29) yields

p(ỹ|y∗,M1) =

∫
p(y|θ1,M1)p(θ1|M1)dθ1∫
p(y∗|θ1,M1)p(θ1|,M1)dθ1

. (30)
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Hence this predictive likelihood is simply the ratio of the marginal likelihood for all obser-

vations over the marginal likelihood for the first part of the data.

We estimate these marginal likelihoods by IS, where we compare the performance of

the candidate density resulting from MitISEM with the ‘adaptive’ Student-t density. The

computation of a predictive likelihood may be yet another reason why one needs an approx-

imation of a non-elliptically shaped target distribution. For the posterior after observing

only the first subset of data y∗ may ‘suffer’ more from local non-identification of model

parameters than the posterior based on the whole data set y. Roughly stated, the subset

of data y∗ may not contain strong enough information to ‘keep the posterior away from

difficult areas (e.g., ridges due to local non-identification) of the parameter space.

In this application, we use again the S&P 500 data and repeat the simulation-based

computation of the predictive likelihoods, Bayes factors and model probabilities 100 times.

The first 600 observations are regarded as the ‘training sample’ y∗ = (y1, . . . ym). Table 3

shows simulation results. Two main findings arise from the table. First, the NSE values

suggest that MitISEM produces far more precise estimates of predictive likelihoods and

hence model probabilities. Second, an even more important result is that there is a sizeable

difference between the means of the estimated predictive likelihoods from both approaches

(over the 100 repetitions). The reason is arguably that the adaptive Student-t candidate

density misses an important subdomain of the parameter space. The considerable number

of Student-t components in the mixture approximations (between 3 and 6) suggests the

presence of rather non-elliptical shapes. In future research we will investigate this difference

in more detail. In any case, the example stresses that the specification of an appropriate

candidate density may be relevant for estimating model probabilities, and hence for model

choice or Bayesian Model Averaging.
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Table 3: Model comparison between a Gaussian Mixture GJR-GARCH and a Gaussian Mixture EGARCH

model. Means and corresponding NSE values are based on 100 simulation runs. Predictive likelihoods are

computed by IS with adaptive Student-t and MitISEM candidate densities.

Mixt GJR-GARCH Mixt EGARCH

MitISEM results

# components Training sample 3 5

in candidate Full Sample 6 4

Predictive Likelihood

10234· mean 10236· NSE 10234· mean 10236· NSE

MitISEM 1.70 2.96 7.03 8.46

Adaptive 1.76 8.42 5.86 22.51

Bayes Factors and Model Probabilities

mean 103· NSE mean 103· NSE

Bayes Factor MitISEM 0.24 4.90

Adaptive 0.30 19.10

Model prob MitISEM 0.19 3.18

Adaptive 0.23 11.18

3 Sequential MitISEM

In this section, we propose a method for applying MitISEM in a sequential manner, so

that the candidate distribution for posterior simulation is cleverly updated when new data

become available. Our results show that the computational effort reduces enormously, while

the quality of the approximation remains almost unchanged, as compared with an ‘ad hoc’

procedure in which the construction of the MitISEM candidate is performed ‘from scratch’

at every moment in time. In the next subsection we show how this sequential approach

can be combined with a tempering approach, which facilitates the simulation from densities

with multiple modes that are far apart.

The previous sections showed that, although the IS-weighted EM steps are relatively

efficient, the construction of an appropriate candidate distribution may still require consid-

erable computing time. After all, it requires evaluations of the target density kernel. This

may seem a serious disadvantage if one requires multiple estimates over time, for example

daily Bayesian forecasts. However, the idea behind the procedure in this section is that the

posterior for data y1:T+1 = {y1, . . . , yT , yT+1} is typically not so different from the posterior

for data y1:T = {y1, . . . , yT}. Therefore, one can ‘recycle’ the same candidate distribution.

At many moments, the candidate distribution can simply be reused. Further, if the can-

didate distribution needs to be updated, i.e. if its quality falls below a certain level, then
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we still do not require to start from scratch. It may suffice to perform an update using the

IS-weighted EM algorithm, keeping the number H of Student-t components the same. Only

if the resulting quality is still below a desired level, then we start the MitISEM procedure,

adding components until convergence has been reached.

Suppose that at time T + τ (τ = 1, 2, . . .) we want to analyze the posterior based on

data y1:T+τ = {y1, . . . , yT+τ}, and that time T was the last time when we had to update the

candidate density. That is, the current candidate distribution has been estimated using the

data y1:T . Then at time T + τ we perform the following algorithm:

Algorithm 2. The Sequential MitISEM approach for obtaining a candidate density for

the posterior density for data y1:T+τ :

(1) Compute C.o.V.(no update), the C.o.V. value that is based on the posterior density

kernel for data y1:T+τ and the current candidate density.

(2) Compare C.o.V.(no update) with C.o.V.(T), the C.o.V. value of the last time when

the candidate was updated. If the change is below a certain threshold (10%), stop.

Otherwise go to step (3).

(3) Run the IS-weighted EM algorithm with the current mixture of H Student-t densities

as starting values. Sample from the new distribution (with the same number of com-

ponents H) and compute IS weights and the corresponding C.o.V. value C.o.V.(only

EM update). Since the IS-weighted EM algorithm updates all mixture components, it

can easily perform a useful shift of the candidate density.

(4) Judge the value of C.o.V.(only EM update). If the change of quality is below a certain

threshold (10%), stop. Otherwise go to step (5).

(5) Iterate on the number of components until the C.o.V. value has converged.

When a particular Student-t component gets a minimal weight, then the practical rel-

evance is negligible. In such a case we delete the Student-t component from the mixture.

So, the number of Student-t components is not monotonically increasing over time. In step

(2) we compare C.o.V.(no update) with C.o.V.(T) rather than the C.o.V. for the posterior

at time yT+τ−1, since in the latter case a series of small increases of the C.o.V. may eventu-

ally lead to a much worse candidate density, without the algorithm ever being ‘alarmed’ to

update the candidate.
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We apply the Sequential MitISEM algorithm to the Gaussian Mixture EGARCH model

with the S&P 500 data. We estimate the model on the first 1300 observations and recycle the

obtained candidate density by adding iteratively one observation of the forecast sample to

the existing sample. At each time t = 1301, . . . , 1350, the predictive likelihood is computed.

The training sample y∗ (for the marginal likelihood in the denominator of the predictive

likelihood) consists of 500 observations, and is remained fixed.

We compare the Sequential MitISEM approach with the ‘ad hoc MitISEM approach’,

whichs run the MitISEM algorithm from scratch at each time t = 1300, . . . , 1350. The

comparison is twofold. First we compare the computating time that is involved with both

methods. Second the quality of the estimates of the predictive likelihood is compared. In

order to fulfill the second comparison measure, we repeat the calculation of the predictive

likelihoods 100 times and compute the NSE as the standard deviation over the repetitions.

Table (4) compares both methods in computational effort and provides more details

about the results of the Sequential MitISEM algorithm. During the forecast sample, the

constructed candidate density is adapted only one time (step (3)). In all other cases, it was

not necessary in our strategy to adapt the candidate density.

To emphasize that the number of times the candidate density is left unchanged is not

a result of coincidence, we have run the Sequential MitISEM approach for a different data

set and a different model. We have considered the Gaussian Mixture GJR-GARCH and

Gaussian Mixture-EGARCH model, applied to daily log-returns for the SMI-index (1992-

1998), data used by Auśın and Galeano (2007). Likewise, we iteratively add one observation

of the forecast sample to the starting sample ỹ = (y1, . . . y1000). The forecast sample is

denoted by yτ = y1001, . . . , y1858, hence 858 times the candidate density is updated, extended

or left unchanged. Table (5) shows that for both models in almost 90% of the cases the

current candidate density is recycled, i.e. no adaption or extension is required.

We now turn back to the application of this section. Using the Sequential MitISEM

algorithm implies a huge computational advantage, as it is more than 45 times faster than

the ‘ad hoc MitISEM method’. The Sequential MitISEM algorithm is visualized in Figure

(4). The blue line represents C.o.V.(T), the Coefficient of Variation that is used in step (2)

for comparison, whereas the green line denotes C.o.V.(no update). Finally the red line gives

an impression of the quality of the ‘ad hoc MitISEM approach’: the average C.o.V. value

of the ‘ad hoc MitISEM approach’ over the same period. When the dataset includes the

25th observation of the forecast sample, the new C.o.V . value is relatively too high. In this

case the candidate density is updated which is shown by the upward shift of the blue line,

representing the new value of C.o.V.(T) (and the new moment T of the latest update). The
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Table 4: Results of the Sequential MitISEM algorithm, applied to a Gaussian Mixture EGARCH model,

compared with the ‘ad hoc MitISEM method’, which simply runs the MitISEM algorithm from scratch on

each sample (y1:t) t = (1301, . . . , 1350). The number of times adapted denotes the case when the candidate is

only updated, using IS-weighted EM, while the number of components is held constant. When the candidate

is adapted and extended, the number of components increases. Reusing the candidate density implies that

the same candidate density is held, hence no updating occurs.

Sequential MitISEM Adhoc MitISEM

Sequential MitISEM

# adapted 1

# adapted and

extended 0

# reused 48

Computational effort

Construct 50

candidate densities

over period (1300− 1349) 117 s 5602 s

figure suggests that the quality of Sequential MitISEM is approximately the same as the

‘ad hoc MitISEM approach’, since the difference in C.o.V. values is quite small. (Note that

the y-axis corresponds to merely the interval [0.66, 0.84].)

An additional indication is given by Figure 5, which shows the mean of 100 predictive

likelihoods with 95% confidence bounds. Since the blue and red asterisks lie most of the

time in both confidence intervals, we suggest again that the quality of the Sequential Mi-

tISEM algorithm is of the same order as the ‘ad hoc MitISEM approach’. We further note

that the same procedure can be used if one makes use of a moving window instead of the

expanding window of data that we use. To conclude this subsection, Sequential MitISEM is

far more efficient compared to a ‘ad hoc approach’ as it produces approximately the same

quality of candidate distributions for predictive likelihood estimation with considerably less

computational effort.
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Table 5: Results of the Sequential MitISEM algorithm, applied to a Gaussian Mixture EGARCH model and

Gaussian Mixture GJR-GARCH model. The date consist of daily log-returns from the SMI-index from July

1991 until August 1998 (data of Auśın and Galeano (2007)). The models are estimated on the first 1000

obervations and recycled after iteratively adding one observation of the forecast sample (t = 1001, . . . , 1859)

to the existing sample. The number of times adapted denotes the case when the candidate is only updated,

using IS-weighted EM, while the number of components is held constant. When the candidate is adapted

and extended, the number of components increases. Reusing the candidate density implies that the same

candidate density is held, hence no updating occurs.

Mixture EGARCH(1,1) Mixture GJR-GARCH(1,1)

# adapted 56 38

# adapted and

extended 45 33

# reused 757 787
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Figure 4: The blue line represents C.o.V.(T), the Coefficient of Variation that is used for comparison in

step (2) of the Sequential MitISEM approach, whereas the green line denotes C.o.V.(no update). Finally

the red line gives an impression of the quality of the ‘ad hoc MitISEM approach’: the average C.o.V. value

of the ‘ad hoc MitISEM approach’ over the same period. When the dataset includes the 25th observation

of the forecast sample, the new C.o.V . value is relatively too high. In this case the candidate density is

updated which is shown by the upward shift of the blue line, representing the new value of C.o.V.(T) (and

the new moment T of the latest update).
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Figure 5: Predictive likelihood estimates based on a Gaussian Mixture EGARCH model. The asterisks show

at each time the mean of 100 predictive likelihoods; the red and blue line correspond with 95% confidence

bounds (estimated from the 100 repetitions). The red asterisks and confidence bounds are based the ‘ad hoc

MitISEM approach’, where each day the MitISEM approach is applied from scratch. The blue asterisks and

confidence bounds are based on the Sequential MitISEM algorithm.

3.1 Tempered MitISEM

Although the MitISEM approach can approximate multimodal target distributions, it may

occur in extreme cases that the modes of a target distribution are so wide apart that one or

more of the modes are ‘missed’. To decrease the probability that distant modes are ‘missed’,

one can combine MitISEM with a tempering approach. The proposed tempering method

moves sequentially from a tempered target density kernel, the target density kernel to the

power of a positive number that is smaller than 1, towards the real target density kernel.

The tempered target distribution is more diffuse, roughly stated ‘more uniform’, and hence

the probability of detecting far-away modes is higher. The tempering idea is used in the

Equi-Energy sampler, developed by Kou, Zhou and Wong (2006).

We apply the tempering approach in the following way as a Sequential MitISEM algo-

rithm. Given a target kernel f(θ), we temper this kernel by raising it to the power (1/P0)

with P0 > 1, i.e. f(θ)1/P0 . The MitISEM algorithm is applied to this tempered kernel

f(θ)1/P0 . The resulting mixture of Student-t densities is used as input for the updated tem-

pered target kernel, say f(θ)1/P1 , with 1 ≤ P1 < P0. This approach is repeated by decreasing

Pn (n = 0, 1, 2, . . . , ñ) iteratively to Pñ = 1, corresponding to the real target kernel. Many
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possible choices can be made on the number of iterations and the distance between the Pn.

We follow Kou, Zhou and Wong (2006), and take equidistant steps of log(Pn). We label this

approach the Tempered MitISEM procedure.

We apply the Tempered MitISEM approach to the same highly multimodal density that

is used by Kou, Zhou and Wong (2006): the two-dimensional normal mixture:

f(x) =
20∑
i=1

wi

2πσ2
i

exp

(
− 1

2σ2
i

(x− µi)
′(x− µi)

)
(31)

where σ1 = . . . = σ20 = 0.1, w1 = . . . = w20 = 0.05, and the 20 mean vectors

(µ1, µ2, . . . , µ20) =

(
2.18 8.67 4.24 8.41 3.93 3.25 1.70

5.76 9.59 8.48 1.68 8.82 3.47 0.50

4.59 6.91 6.87 5.41 2.70 4.98 1.14

5.60 5.81 5.40 2.65 7.88 3.70 2.39

8.33 4.93 1.83 2.26 5.54 1.69

9.50 1.50 0.09 0.31 6.86 8.11

)
. (32)

Since most local modes are 15 standard deviations away from the nearest one, this

mixture distribution is a good test for our approach. We compare three methods. First

the Tempered MitISEM approach is used. In more detail, we choose P0 = 5 and move

sequentially in five steps to P5 = 1 with equally (log) spaced intervals. Second, we apply

the MitISEM algorithm to the real target density, hence no tempering approach is used.

The final sampler is an ordinary Student-t distribution with adapted mode and scale matrix.

Figures 6 and 7 and Table 6 show simulation results from these three methods. First

of all, panel (A∗) of Figure 6 suggests that the ‘adaptive’ Student-t density produces poor

results. In other words, one really needs advanced samplers to handle multimodal target

kernels. Second, the MitISEM approach without tempering is a serious improvement, as

the C.o.V. value decreases substantially from 23 to 0.77. The MitISEM algorithm is able to

detect most of the modes, however by comparing panel (C∗) to panel (D∗) of Figure 6, which

represents simulated draws from the target density, not all modes are covered. The mode

around (8.41, 1.68) is missed by MitISEM. This reflects that if the mode lies to far away

from the remaining modes, MitISEM may not be able to detect this important subdomain

of the target density. Finally, the ‘tempered MitISEM’ approach is shown in Figure 7.

From panel A to E, candidate draws are shown for the target p(θ)1/P , where P is equally

log-spaced from 5 to 1. The importance of sequentially lowering the value of Pn lies in the

fact that first the global area of interest is captured. Then a lower Pn in the subsequent

panels shows an increasing precision of the local modes. In the end, the improvement of
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‘tempered MitISEM’ over the basic MitISEM algorithm is clearly illustrated in panel (E),

since all 20 modes are covered. The quality of the final candidate density is also confirmed

by Table 6, as the C.o.V. value drops further from 0.77 to 0.43.

Table 6: Results of simulation from the two-dimensional normal mixture (31) by three different candidates:

an (adaptive) Student-t density, and mixtures of Student-t densities with and without tempering.

Adaptive t MitISEM Tempered MitISEM

Number of components in candidate mixture 1 14 16

C.o.V. of IS weights 21.57 0.78 0.43
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Figure 6: Samples generated by the Adaptive Student-t density (panel (A*) and (B*)) and the MitISEM

algorithm (panel (C*)). panel(D*) shows draws simulated from the real target distribution given in (31).
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Figure 7: Samples generated form each step of the Sequential MitISEM algorithm. Starting from panel (A)

to (E), P (in the target kernel f(θ)1/P ) is equally log-spaced from 5 to 1. Panel (F) shows draws simulated

from the real target distribution given in (31).

31



4 Permutation-augmented MitISEM

In this section, we introduce a permutation-augmented MitISEM approach, for importance

sampling (or the MH algorithm) from posterior distributions in mixture models without

the requirement of imposing a priori identification restrictions on the mixture components’

parameters. As discussed by Geweke (2007), the mixture model likelihood function is invari-

ant with respect to permutation of the components of the mixture. If functions of interest

are permutation sensitive, as in classification applications, then interpretation of the likeli-

hood function requires valid inequality constraints. If functions of interest are permutation

invariant, as in prediction applications, then there are no such problems of interpretation.

Geweke (2007) proposes the permutation-augmented Gibbs sampler, which can be consid-

ered as an extension of the random permutation sampler of Frühwirth-Schnatter (2001).

The practical implementation of the idea of the permutation-augmented Gibbs sampler is

that one simulates a Gibbs sequence with total disregard for label switching or the prior’s

labeling restrictions. Only after that and only if functions of interest are permutation sen-

sitive, then one simply permutes the Gibbs sampler’s output so as to satisfy the labeling

restrictions. We propose a method of permutation-augmented IS, for which we extend the

MitISEM approach to construct an approximation to the unrestricted posterior, taking into

account the permutation structure. If m is the number of components of the mixture model,

then the addition of a Student-t component to the candidate implies an addition of the m!

equivalent permutations. Thereby, we construct a mixture of mixtures of m! Student-t com-

ponents, where the restriction is imposed that the m! permutations have equal candidate

density. Intuitively stated, we help the basic MitISEM approach by ‘telling’ it about the in-

variance with respect to permutations. It should be noted that this invariance with respect

to permutations is not the only possible cause of non-elliptical shapes in a mixture model’s

posterior. For example, if the probability of one of the model’s components tends to zero,

the local non-identification of the component’s other parameters causes ridge shapes.

To illustrate our permutation-augmented method, we consider mixtures of m normal

distributions. We assume that yt are independently distributed with

yt ∼ N(µj, σ
2
j ) if ztj = 1 (t = 1, . . . , T ; j = 1, . . . ,m),

where zt = (zt1, . . . , ztJ)
′ is a vector of latent 0/1 variables of which exactly one of the m

elements is equal to 1, where

Pr[ztj = 1] = πj (t = 1, . . . , T ; j = 1, . . . ,m).
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Define y = (y1, . . . , yT )
′ and z = {z1, . . . , zT}. Then the likelihood is given by:

p(y|θ) =
T∏
t=1

{
m∑
j=1

πj

[
(2π)−1/2σ−1

j exp

(
− 1

2σ2
j

(yt − µj)
2

)}]
. (33)

with θ = (µ1, . . . , µm, σ1, . . . , σm, π1, . . . , πm−1), where πm ≡ 1 −
∑m−1

j=1 πj. We use proper

non-informative priors for all parameters θ: truncated uniform priors for µj and log σj and

(π1, . . . , πm−1, πm) ∼ Dirichlet(1, 1, . . . , 1).

First, we consider the simple case of m = 2 with µ1 = µ2 = 0, so that θ = (σ1, σ2, π1).

We simulate 250 observations from this model with true values θ = (σ1, σ2, π1) = (1, 2, 0.8).

The top panel of Figure 8 shows the shapes of the unrestricted posterior distribution. In ad-

dition to the multimodality due to the absence of identification restrictions, the distribution

‘per mode’ is also non-elliptical in the sense of ‘curved contours’.

The bimodal shapes reflect that the model with parameter values (σ1, σ2, π1) and the

permuted version (σ2, σ1, 1 − π1) are obviously equivalent. We will use the subscript c to

denote the permutations of the original vector θ. In the case ofm = 2 components withm! =

2 permutations, we use θc=1 for the original parameter vector, and θc=2 for the permuted

version. For the model with m = 3 and µ1 = µ2 = µ3 = 0, we have θ = (σ1, σ2, σ3, π1, π2).

Here we have m! = 6 permutations θc (c = 1, . . . ,m!). For an explanation of our notation

θc we refer to Table 7. During the permutation-augmented algorithm we also make use of

the inverse permutation θinv(c), defined such that (θinv(c))c = (θc)inv(c) = θ. In the case of

m = 2 regimes, θinv(c) = θc; there are only two options, leaving θ the same or switching the

two regimes, where applying the same operation twice always returns the original θ. The

case of m = 3 regimes is somewhat less straightforward; there are two permutations that

require a different permutation to return to the original θ. Table 7 provides the details.

The basic idea of the permutation-augmented MitISEM approach is the same as the

basic, ‘plain vanilla’ MitISEM. However, there are subtle differences in the IS-weighted EM

algorithm. Instead of H Student-t components h (h = 1, . . . , H), the candidate distribution

now consists of H ·m! Student-t components (h, c) (h = 1, . . . , H; c = 1, . . . ,m!), where for

each Student-t component (h, c) µh,c, Σh,c are permuted versions of µh = µh,1 and Σh = Σh,1;

further we have νh,c = νh and ηh,c = ηh/m!. Instead of (9)-(12), the conditional expectations

of the latent variables given θi and ζ = ζ(L−1), the optimal parameters in the previous EM
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iteration, are given by:

z̃ih,c ≡ E
[
zih,c
∣∣θi, ζ = ζ(L−1)

]
=

t(θi|µh,c,Σh,c, νh) ηh∑J
j=1

∑m!
l=1 t(θ

i|µj,l,Σj,l, ηj) ηj
. (34)

z̃/w
i

h,c ≡ E

[
zih,c

1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
= z̃ih,c

k + νh
ρih,c + νh

. (35)

ξih ≡ E
[
logwi

h

∣∣θi, ζ = ζ(L−1)
]
=

=
m!∑
c=1

{[
log

(
ρih,c + νh

2

)
− ψ

(
k + νh

2

)]
z̃ih,c

}

+
[
log
(νh
2

)
− ψ

(νh
2

)](
1−

m!∑
c=1

z̃ih,c

)
, (36)

δih ≡ E

[
1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
=

m!∑
c=1

k + νh
ρih,c + νh

z̃ih,c +

(
1−

m!∑
c=1

z̃ih,c

)
. (37)

with ρih,c = (θi − µh,c)
′Σ−1

h,c(θ
i − µh,c), and all parameters µh,c,Σh,c, νh, ηh elements of ζ(L−1).

Instead of (13)-(15), the expressions of the Maximization step are given by:

µ
(L)
h =

[
N∑
i=1

m!∑
c=1

Wi z̃/w
i

h,c

]−1 [ N∑
i=1

m!∑
c=1

Wi z̃/w
i

h,c θ
i
inv(c)

]
, (38)

Σ̂
(L)
h =

∑N
i=1

∑m!
c=1Wi z̃/w

i

h,c (θ
i
inv(c) − µ

(L)
h )(θiinv(c) − µ

(L)
h )′∑N

i=1

∑m!
c=1Wi z̃ih,c

, (39)

η
(L)
h =

∑N
i=1

∑m!
c=1Wi z̃

i
h,c∑N

i=1Wi

, (40)

whereas the equation of the first order condition for νh remains (16). For the derivations

we refer to the appendix.

We apply the permutation-augmented MitISEM approach to the posterior distribution

in the top panel of Figure 8, resulting in a mixture of 5·2 Student-t distributions shown in the

bottom panel of Figure 8. We use this candidate in the IS and MH methods to estimate the

standard deviation of yt (t = 1, . . . , T ), σ =
√∑m

j=1 πj (σ
2
j + µ2

j)− µ2 with µ =
∑m

j=1 πj µj.

This quantity is clearly not permutation-sensitive, so that we do not require identification

restrictions. The results are in the first row of Table 8. The C.o.V. of the IS weights and the

high MH acceptance rate reflect the accuracy of the MitISEM approximation. Table 9 shows

the results of Gibbs sampling (with data augmentation), which requires more computing

time to reach the same accuracy. If we would desire a higher level of precision, then the

difference in computing time would be enormous, since simulating 10000 extra draws requires

much more time in the Gibbs sampler.
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At this point, we must address a disadvantage of the permutation-augmented MitISEM

approach. The number of expectations of latent variables z̃ih,c and z̃/w
i

h,c in (34) and (35)

that need to be computed, increases with the factorial m! of the number of regimes in

the model. This implies that we should only apply the permutation-augmented MitISEM

approach with a ‘limited’ value of m. The second, third and fourth row of Tables 8 and 9

show that the permutation-augmented MitISEM approach is at least feasible (and useful)

for m = 2, m = 3 and m = 4 regimes (with 2! = 2, 3! = 6 and 4! = 24). For each setting, we

simulated 250 observations, applied the permutation-augmented MitISEM approach, and

compared the results of IS with the Gibbs sampler. Again, the Gibbs sampler requires more

computing time to reach the same (or worse) accuracy. Since the increase from 4! = 24 to

5! = 120 is obviously huge, the permutation-augmented MitISEM algorithm may have its

practical limit at m = 4.

It should be noted that the permutation-augmented MitISEM approach outperforms the

Gibbs sampler, even though the latter does not suffer from a large serial correlation in the

Gibbs sequence (the first order serial correlation is at each instance below 0.30), which may

be a problem in other settings. Further, the IS approach has the advantage that an estimate

of the marginal likelihood is immediately available as the average of the IS weights, whereas

for the Gibbs sampler the method of Chib (1995) would require additional reduced runs.

In the next section, we will consider an empirical example involving an extended version

of the permutation-augmented MitISEM algorithm for a subset of the parameters, where

the candidate Student-t components’ means are allowed to depend on the draw of a different

subset of parameters.

We now explain why we do not use the permutation-augmented MitISEM approach

for the mixture GARCH models in previous sections. First, suppose that we relax the

identification restriction 0 < λ < 1. Then the models with parameter values (µ, ω, α, β, λ, ρ)

and (µ, ω, α, β, 1/λ, 1 − ρ) would be equivalent. Suppose we have a mixture of Student-t

distributions that approximates the distribution of (µ, ω, α, β, λ, ρ). Then we do not have a

mixture of Student-t distributions that approximates the distribution of (µ, ω, α, β, 1/λ, 1−
ρ). That is, if (X, Y ) has a bivariate Student-t distribution, then (1/X, Y ) does not have

a bivariate Student-t distribution. This reflects that the permutation-augmented MitISEM

approach should only be used if equivalent parameter vectors are linear combinations of each

other, which is typically the case. The mixture GARCH model is an exception. Second,

we follow Auśın and Galeano (2007) in imposing an informative prior that incorporates the

restriction that the regime with the smallest variance has the highest probability. Therefore,

we have a ‘real’ restriction, not merely identification restrictions.
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Also if equivalent parameter vectors are linear combinations of each other, one could still

impose identification restrictions and apply the basic MitISEM approach to the restricted

posterior. However, permutation-augmented MitISEM is typically more efficient for several

reasons: (i) during the construction of the candidate we make use of the a priori knowl-

edge on the permutation-invariant structure; (ii) no draws are rejected that do not satisfy

the identification restrictions; if we desire to compute permutation-sensitive quantities of

interest, then these draws are simply permuted such that they do satisfy the identification

restrictions. (iii) imposing identification restrictions may itself lead to more irregular shapes

of the target distribution.

The use of the tempered MitISEM approach would not make sense here, since we know

a priori the permutation-invariant structure, so that we know all modes as soon as we find

one mode. The tempered MitISEM approach needs only to be used when we are confronted

with multimodality having an ‘unknown structure’.

Finally, we note that also in mixture models with more than 4 regimes the permutation-

augmented MitISEM approach can be useful. Although in such cases we can not proceed

without any identification restrictions, we can still use permutation-augmented MitISEM

to reduce the number of identification restrictions. For example, in a mixture of 6 normal

distributions, we can impose that the first and last have the smallest and largest variance

(or mean), whereas the 4 middle regimes are left unrestricted. This may still have the same

positive effect on the computing time and the quality of the candidate.
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Figure 8: Mixture of two normal distributions: Highest Posterior Density credible region of θ = (σ1, σ2, π1)

(top) and ‘Highest Candidate Density region’ for mixture of 2 · 5 Student-t candidate distribution (bottom),

constructed by permutation-augmented MitISEM algorithm.
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Table 7: Explanation of notation for permutation θc and inverse permutation θinv(c) in mixture models with

m = 2 and m = 3 regimes with parameter vector θ. The examples that are referred to are the mixtures of

normal distributions with µj = 0 (j = 1, . . . ,m)

Mixture model with m = 2 components and m! = 2 permutations:

c permutation θc in example inverse permutation θinv(c) in example inv(c)

1 (1,2) → (1,2) (σ1, σ2, π1) (1,2) → (1,2) (σ1, σ2, π1) 1

2 (1,2) → (2,1) (σ2, σ1, 1− π1) (1,2) → (2,1) (σ2, σ1, 1− π1) 2

Mixture model with m = 3 components and m! = 6 permutations:

c permutation θc in example inverse permutation θinv(c) in example inv(c)

1 (1,2,3) → (1,2,3) (σ1, σ2, σ3, π1, π2) (1,2,3) → (1,2,3) (σ1, σ2, σ3, π1, π2) 1

2 (1,2,3) → (1,3,2) (σ1, σ3, σ2, π1, 1− π1 − π2) (1,2,3) → (1,3,2) (σ1, σ3, σ2, π1, 1− π1 − π2) 2

3 (1,2,3) → (2,1,3) (σ2, σ1, σ3, π2, π1) (1,2,3) → (2,1,3) (σ2, σ1, σ3, π2, π1) 3

4 (1,2,3) → (2,3,1) (σ2, σ3, σ1, π2, 1− π1 − π2) (1,2,3) → (3,1,2) (σ3, σ1, σ2, 1− π1 − π2, π1) 5

5 (1,2,3) → (3,1,2) (σ3, σ1, σ2, 1− π1 − π2, π1) (1,2,3) → (2,3,1) (σ2, σ3, σ1, π2, 1− π1 − π2) 4

6 (1,2,3) → (3,2,1) (σ3, σ2, σ1, 1− π1 − π2, π2) (1,2,3) → (3,2,1) (σ3, σ2, σ1, 1− π1 − π2, π2) 6

Table 8: Simulation results for IS and the MH algorithm, using the candidate distribution resulting from

the permutation-augmented MitISEM procedure, for posterior simulation in mixture models with normally

distributed regimes

posterior mean NSE time for time C.o.V. MH number

of σ construction for simulating of IS accep- of t

of MitISEM 10000 weights tance components

candidate (in s) draws rate in MitISEM

m = 2 (µj = 0) 1.2360 0.0009 40.48 0.72 0.36 0.84 5

m = 2 (µj in model) 4.9339 0.0009 19.63 0.79 0.30 0.83 3

m = 3 (µj in model) 7.4978 0.0014 23.20 1.24 0.47 0.74 2

m = 4 (µj in model) 10.8300 0.0031 75.08 1.89 0.61 0.67 2

Table 9: Simulation results for Gibbs sampling (with data augmentation) for posterior simulation in mixture

models with normally distributed regimes

posterior mean NSE time

of σ for simulating

10000 draws +

1000 burn-in)

m = 2 (µj = 0) 1.2358 0.0009 42.65

m = 2 (µj in model) 4.9330 0.0009 46.75

m = 3 (µj in model) 7.4963 0.0021 66.11

m = 4 (µj in model) 10.8267 0.0029 84.54
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5 Partial MitISEM

In this section, we propose a partial MitISEM approach, which aims at approximating

the marginal and conditional posterior distributions of subsets of model parameters, rather

than the joint. This division can substantially reduce the dimension of the approximation

problem, which facilitates the application of adaptive importance sampling for posterior

simulation in more complex models with larger numbers of parameters. Approximating the

joint posterior density kernel with a mixture of Student-t distributions allows for a huge

flexibility of shapes. However, rarely all of this flexibility is required. It is typically enough

to use mixtures of Student-t distributions for the dependence within subsets of the pa-

rameters. We can often divide the parameters into subsets, where the dependence between

different subsets is less complicated. Our partial MitISEM approach is to divide the model

parameters into ordered subsets, where the conditional candidate distributions’ means are

linear combinations of (functions of) the parameters in previous subsets. The conditional

candidate distributions’ covariances can also be made to depend on the parameters in pre-

vious subsets, by allowing the probabilities of the mixture components of the conditional

candidate distribution to differ for different ranges of values for functions of the parameters

in previous subsets. We will analyze this extension, which still fits within the framework

of the IS-weighted EM algorithm, in future research. The partial MitISEM approach is a

way to provide a usable approximation to the posterior, while preventing problems such as

numerical issues with specifying huge covariance matrices for a joint candidate distribution

– problems that have led researchers to conclude that IS necessarily suffers from a ‘curse of

dimensionality’.

Intuitively, the idea behind the basic MitISEM approach is as follows. First, the asymp-

totic normal distribution N(θmode,−H(θmode)
−1), with θmode the mode of the target distri-

bution, and H(θmode) the Hessian of the log-target distribution at the mode, is replaced

by a Student-t distribution t(θmode,−H(θmode)
−1, ν) with low degrees of freedom ν to have

fat tails. Second, t(θmode,−H(θmode)
−1, ν) is replace by a mixture of Student-t distribu-

tions with optimized modes, scale matrices, degrees of freedom and weights, to have more

flexibility of the candidate’s shapes.

The intuitive idea behind the partial MitISEM approach is as follows. Divide the set of

parameters θ into two subsets θ1 and θ2. The asymptotic normal distribution θ ∼ N(µ =

θmode,Σ = −H(θmode)
−1) is equivalent with

θ1 ∼ N(µ1,Σ11) (41)

θ2|θ1 ∼ N(µ2 + Σ−1
22 Σ21(θ1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12). (42)
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with

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

In the partial MitISEM approach we replace both normal distributions of (41) and (42)

by mixtures of Student-t distributions, with optimized scale matrices, degrees of freedom

and weights of the marginal candidate of θ1 and conditional candidate of θ2 given θ1. For

θ1 we further optimize the Student-t components’ modes, such that this reduces to the

basic MitISEM method. For the conditional candidate of θ2 we use a slightly different IS-

weighted EM algorithm in which coefficients are optimized. That is, we basically replace

µ2 and Σ−1
22 Σ21 by optimized coefficients that are allowed to differ between the Student-t

components. Moreover, the conditional means are allowed to be a linear combination of

non-linear functions of θ1 (and the given data set).

Suppose we have S subsets of parameters θs (s = 1, . . . , S). Then the partial MitISEM

approach constructs one marginal candidate distribution of θ1, and S − 1 conditional can-

didate distributions (θ2 given θ1; θ3 given θ1, θ2; . . . ; θS given θ1, ..., θS−1), by iteratively

adding Student-t components until for all subsets the latest addition has not caused a sub-

stantial improvement of the candidate, as an approximation to the target. For the marginal

distribution of θ1 we use the basic IS-weighted EM algorithm. However, for the conditional

distribution of θs (ks × 1) given θ1, . . . , θs−1 we use an extended version where µh = βhX

(h = 1, . . . , H), with βh a ks × r matrix and X an r × 1 vector (of which the elements are

functions of θ1, . . . , θs−1 (and the given data)). To obtain the appropriate Expectation and

Maximization steps in the IS-weighted EM algorithm, one substitutes µh = µi
h = βhX

i.

Moreover, (13) is replaced by

β
(L)′

h =

[
N∑
i=1

Wi z̃/w
i

h Xi X
′
i

]−1 [ N∑
i=1

Wi z̃/w
i

h Xi θ
i′

]
, (43)

or in case of the permutation-augmented MitISEM approach (38) is replaced by

β
(L)′

h =

[
N∑
i=1

m!∑
c=1

Wi z̃/w
i

h,c Xi X
′
i

]−1 [ N∑
i=1

m!∑
c=1

Wi z̃/w
i

h,c Xi θ
i′

inv(c)

]
. (44)

We apply the partial MitISEM approach to an instrumental variables model in which

the distribution of the error terms is a mixture of two normal distributions. We use quarter

of birth as an instrumental variable for education. The data are from Angrist and Krueger

(1991): 8933 observations on individuals of the state of Kentucky, the state in which the
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instrument is the strongest (or the ‘least weak’), in the sense that the multiple F-test of the

first stage regression has the smallest (significant) p-value.

The dependent variable yt is the log of weekly income of individual t, the possibly

endogenous regressor xt is the number of years of education, zt consists of three dummies

indicating quarter of birth (the first quarter being the reference category). The structural

form of the model is:

yt = xtβ + εt (45)

xt = ztγ + vt (46)

with

(εt, vt)
′ ∼ N(0,Σj) if Ztj = 1 (t = 1, . . . , T ; j = 1, 2),

and

Pr[Ztj = 1] = πj (t = 1, . . . , T ; j = 1, 2).

The restricted reduced form is:

yt = ztγβ + v1t (47)

xt = ztγ + vt (48)

with v1t = vtβ + εt; here

(v1t, vt)
′ ∼ N(0,Ωj) if Ztj = 1 (t = 1, . . . , T ; j = 1, 2).

We specify proper non-informative priors.

We consider the 11-dimensional vector of the restricted reduced form’s parameters θ =

(β, γ, ω1,11, ω1,12, ω1,22, ω2,11, ω2,12, ω2,22, π1), with ωl,ij the element (i,j) of Ωl.

The reason for simulating the elements of the reduced form matrices Ωj (j = 1, 2),

rather than the structural form matrices Σj, is that we divide θ into two subsets θ1 = (β, γ)

(k1 = 4) and θ2 = (ω1,11, ω1,12, ω1,22, ω2,11, ω2,12, ω2,22, π1) (k2 = 7). The relationship between

(β, γ) and Ωj (j = 1, 2) is ‘simpler’ than the relationship between (β, γ) and Σj (j = 1, 2),

where

Σj =


ωj,11 + ωj,22β

2 − 2ωj,12β ωj,12 − ωj,22β

ωj,12 − ωj,22β ωj,22


depends on β. In other words, in the restricted reduced form β only appears in γ β; this

product is always identified, even if γ → 0. So, even if γ → 0, we would not have ‘problems’

with the posterior distribution of the Ωj (j = 1, 2). For γ → 0 we are faced with the

well-known case of local non-identification of β.
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For the covariance matrices Ωj (j = 1, 2) we have local non-identification for πj →
0. Therefore, multiple parameters may exhibit irregular, non-elliptical posterior contours.

However, we can approximate the posterior shapes of θ1 and θ2 separately, since these two

issues of possible non-identification are not strongly related.

For θ2 we use the permutation-augmented MitISEM algorithm with µi
h,c = βh,cX

i, where

X i consists of a constant and the elements of the sample covariance matrix of the restricted

reduced form’s ‘residuals’ yt − ztγβ and xt − ztγ (t = 1, . . . , T ) for given values of (β, γ).

The posterior mean of β is estimated as 0.0432, with a posterior standard deviation of

0.0254. The 95% posterior interval is estimated as [−0.0095, 0.0921]. For comparison, in

the IV model with 1 normal regime, the posterior mean of β is estimated as 0.0983, with a

posterior standard deviation of 0.0362. For this 1-regime model, the 95% posterior interval

is estimated as [0.0325, 0.1740], not including 0. This huge difference stresses the importance

of taking into account the non-normality of the data in case of weak instruments. Figure

9 shows the log-income data with substantial negative skewness (due to the logarithmic

transformation of some low wages) and large kurtosis.

We also applied the Gibbs sampler (without Rao-Blackwellization), which provides sim-

ilar but less accurate estimates given the same amount of computing time. We do not

use Rao-Blackwellization for two reasons. First, we could also extend the MitISEM-IS ap-

proach, adding one step of simulating latent variables and performing Rao-Blackwellization,

a possibility that we will investigate in future research. Without this extension, the com-

parison would not be fair. Second, for different quantities of interest, such as the effect

of education on wage rather than log-wage (for a particular amount of extra education),

Rao-Blackwellization would not be feasible.

In future research we will investigate the performance of the partial MitISEM approach

in larger models (with larger numbers of parameters).
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Figure 9: Log-income data (in deviation from mean, scaled by standard deviation) for state of Kentucky.

6 Concluding remarks

We introduced a new class of adaptive sampling methods for efficient and reliable posterior

and predictive simulation. Multiple examples have shown the possible relevance of the novel

methods, as a substitute for worse candidate distributions in Importance Sampling or the

Metropolis-Hastings algorithm, or as a substitute or complement (e.g., as a validity check

for estimated posterior moments or marginal likelihoods) for Gibbs sampling.

In future research we intend to investigate further extensions of the methods, such as

the combination of MitISEM with variance reduction techniques such as antithetic sampling

and control variates, the incorporation of an AdMit-step in the MitISEM method (‘AdMit

within MitISEM’), or the implementation of Rao-Blackwellization in the MitISEM proce-

dure (‘Rao-Blackwellization within MitISEM’). Further, we think that the applications of

partial MitISEM to more complicated models (with a larger number of parameters) is of par-

ticular interest. The practical applicability and usefulness of adaptive importance sampling

methods may be substantially increased by the partial MitISEM approach and extensions

thereof.
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[3] Auśın M.C. and P. Galeano (2007), “Bayesian estimation of the mixture GARCH

model”, Computational Statistics & Data Analysis, 51, 2636−2652.

[4] Bartlett M.S. (1957), “A comment on D.V. Lindley’s statistical paradox”, Biometrika,

45, 533−534.

[5] Bauwens L. and Lubrano M. (1998), “Bayesian inference on GARCH models using the

Gibbs sampler”, Econometrics Journal 1, C23−C46.

[6] Black F. (1976), “Studies of Stock Prices Volatility Changes”, Proceeding from the

American Statistical Association, Business and Economics Statistics Section, 177−181.

[7] Bollerslev T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity”,

Journal of Econometrics, 31(3), 307−327.
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A Derivation of the IS-weighted EM algorithm for mix-

tures of Student-t distributions

This appendix provides the derivation of the most general IS-weighted EM algorithm that

is considered in this paper: the permutation-augmented algorithm in a mixture model of m

components, in which the modes µh,c (k×1) of the candidate mixture’s Student-t components

are linear combinations µh,c = βh,cX (with βh,c k × r and X r × 1) where X consists of

(functions of) parameters in previous subsets (plus typically a constant term). For the

‘plain vanilla’ algorithm, that is used in the basic MitISEM approach, one simply sets

m = 1 (deleting the permutation-related subscripts c and inv(c) at all variables), X = 1

(r = 1) and βh,c = µh.

The candidate density g(θ) is a mixture of H ·m! Student-t densities (h = 1, . . . , H; c =

1, . . . ,m!):

g(θ) = g(θ|ζ) =
H∑

h=1

ηh,c

m!∑
c=1

tk(θ|βh,cX,Σh,c, νh), (49)

where ζ is the set of coefficients βh,c, scale matrices Σh,c, degrees of freedom νh, and mixing

probabilities ηh,c of the k-dimensional Student-t components with density:

tk(θ|βh,cX,Σh,c, νh) =
Γ
(
νh+k

2

)
Γ
(
νh
2

)
(πνh)k/2

|Σh,c|−1/2

(
1 +

(θ − βh,cX)
′
Σ−1

h,c(θ − βh,cX)

νh

)−(k+νh)/2

.

(50)

Here Σh,c is positive definite, νh ≥ 1, ηh ≥ 0 and
∑H

h=1 ηh = 1. Moreover, in order to have

a permutation-invariant candidate the mixing probabilities satisfy ηh,c =
ηh
m!
.

In our situation we maximize the weighted log-likelihood

1

N

N∑
i=1

W i log g(θi|ζ)

where g(.|ζ) is the mixture of Student-t densities (49).

The mixture of Student-t densities (49) for θi is equivalent with the specification

θi ∼ N(βh,cX
i, wi

hΣh,c) if zih,c = 1,

where zi is a set of H ·m! latent variables indicating from which Student-t component, and

from which permutation thereof, the observation θi stems: if θi stems from component h

and permutation c, then zih,c = 1, zij,l = 0 for (j, l) ̸= (h, c); Pr[zh,c = 1] = ηh,c; w
i
h has

the Inverse-Gamma distribution IG(νh/2, νh/2). For a more extensive explanation of this

continuous scale mixing representation of (mixtures of) Student-t distributions we refer to
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Peel and McLachlan (2000). Here we have latent ‘data’ θ̃i (i = 1, . . . , N)

θ̃i = {zih,c, wi
h|h = 1, . . . , H; c = 1, . . . ,m!}

and

log p(θi, wi, zi|ζ) = log p(θi|wi, zi, ζ) + log p(wi|ζ) + log p(zi|ζ)

=
H∑

h=1

m!∑
c=1

zih,c log
[
pdfN(βh,cXi,wi

hΣh,c)
(θi)
]
+

H∑
h=1

log pdfIG(νh/2,νh/2)
(wi

h) +
H∑

h=1

zih,c log
( ηh
m!

)
=

H∑
h=1

m!∑
c=1

zih,c

{
−k
2
log(2π)− 1

2
log |Σh,c| −

k

2
log(wi

h)

−1

2

(θi − βh,cX
i)′(Σh,c)

−1(θi − βh,cX
i)

wi
h

}
+

H∑
h=1

{
νh
2
log
(νh
2

)
−
(νh
2

− 1
)
log(wi

h)−
νh
2

1

wi
h

− log
(
Γ
(νh
2

))}

+
H∑

h=1

m!∑
c=1

zih,c log
( ηh
m!

)
=

H∑
h=1

m!∑
c=1

zih,c

{
−k
2
log(2π)− 1

2
log |Σh| −

k

2
log(wi

h)

−1

2

(θiinv(c) −X iβh)
′(Σh)

−1(θiinv(c) −X iβh)

wi
h

}

+
H∑

h=1

{
νh
2
log
(νh
2

)
−
(νh
2

− 1
)
log(wi

h)−
νh
2

1

wi
h

− log
(
Γ
(νh
2

))}

+
H∑

h=1

m!∑
c=1

zih,c log
( ηh
m!

)
, (51)

where wi and zi are a priori independent, and where inv(c) is the inverse of the permuta-

tion c. That is, applying permutation c and permutation inv(c) subsequentially yields the

original vector or matrix.

The expressions of the latent variables wi and zi that appear in terms which also involve

the parameters ζ to be optimized are zih,c,
zih,c
wi

h
, logwi

h, and
1
wi

h
. Therefore, we derive the

conditional expectations of zih,c,
zih,c
wi

h
, logwi

h, and
1
wi

h
given θi and ζ = ζ(L−1), the optimal

parameters in the previous EM iteration:
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(1) Expectation of zih,c: in order to speed up the convergence of the (IS weighted) EM

algorithm we compute the expectation

z̃ih,c ≡ E
[
zih,c
∣∣θi, ζ = ζ(L−1)

]
= Pr[zih,c = 1|θi, ζ = ζ(L−1)]

not given wi
h; that is, w

i
h is integrated out:

p(θi, zi|ζ) =
H∏

h=1

m!∏
c=1

[
p(θi|zih,c = 1, ζ) Pr[zih,c = 1|ζ]

]zih,c
=

H∏
h=1

m!∏
m=1

[
t(θi|βh,cX i,Σh,c, νh)

ηh
m!

]zih,c
,

which is a kernel of a probability function of a multinomial distribution for the set of

zih,c (h = 1, . . . , H; c = 1, . . . ,m!) given θi and ζ, with probabilities Pr[zih,c = 1|θi, ζ =

ζ(L−1)] equal to

z̃ih,c ≡ E
[
zih,c
∣∣θi, ζ = ζ(L−1)

]
=

t(θi|βh,cX i,Σh,c, νh) ηh∑J
j=1

∑m!
l=1 t(θ

i|βj,lX i,Σj,l, ηj) ηj
. (52)

(2) Expectation of
zih,c
wi

h
:

z̃/w
i

h,c ≡ E

[
zih,c

1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
= Pr[zih,c = 1|θi, ζ = ζ(L−1)] ×

E

[
1

wi
h

∣∣∣∣ zih,c = 1, θi, ζ = ζ(L−1)

]
.

Given zih,c = 1, i.e. given that θi stems from permutation c of Student-t component

h, the situation reduces to the case of the EM algorithm for a Student-t distribution

without mixtures (see Hu (2005) for an extensive explanation):

E

[
1

wi
h

∣∣∣∣ zih,c = 1, θi, ζ

]
=

k + νh
ρih,c + νh

.

with

ρih,c = (θi − βh,cX)′Σ−1
h,c(θ

i − βh,cX).

Therefore we have

z̃/w
i

h,c ≡ E

[
zih,c

1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
= z̃ih,c

k + νh
ρih,c + νh

. (53)
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(3) Expectation of logwi
h:

ξih ≡ E
[
logwi

h

∣∣θi, ζ = ζ(L−1)
]
=

=
m!∑
c=1

E
[
logwi

h

∣∣zh,c = 1, θi, ζ = ζ(L−1)
]
Pr[zih,c = 1|θi, ζ = ζ(L−1)]

+E
[
logwi

h

∣∣zih,c = 0 ∀c, θi, ζ = ζ(L−1)
]
Pr[zih,c = 0 ∀c|θi, ζ = ζ(L−1)]

=
m!∑
c=1

{[
log

(
ρih,c + νh

2

)
− ψ

(
k + νh

2

)]
z̃ih,c

}

+
[
log
(νh
2

)
− ψ

(νh
2

)](
1−

m!∑
c=1

z̃ih,c

)
, (54)

where ψ(.) is the digamma function (the derivative of the logarithm of the gamma

function log Γ(.)), and where we again used that given zh,c = 1 the situation reduces

to the case of the EM algorithm for a Student-t distribution without mixtures (see

Hu (2005) for an extensive explanation). For zih,c = 0 ∀c, the conditional distribution

of wi
h given θi, ζ is the distribution given only ζ (since the observation θi does not

depend on wi
h) which is Inverse-Gamma IG(νh/2, νh/2):

E
[
logwi

h

∣∣zih,c = 0 ∀c, θi, ζ = ζ(L−1)
]

= log
(νh
2

)
− ψ

(νh
2

)
.

(4) Expectation of 1
wi

h
:

δih ≡ E

[
1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
=

m!∑
c=1

E

[
1

wi
h

∣∣∣∣ zih,c = 1, θi, ζ = ζ(L−1)

]
Pr[zih,c = 1|θi, ζ = ζ(L−1)]

+E

[
1

wi
h

∣∣∣∣ zih,c = 0 ∀c, θi, ζ = ζ(L−1)

]
Pr[zih,c = 0 ∀c|θi, ζ = ζ(L−1)]

=
m!∑
c=1

k + νh
ρih,c + νh

z̃ih,c +

(
1−

m!∑
c=1

z̃ih,c

)
. (55)

where if zih,c = 0 ∀c, 1/wi
h has the Gamma(νj/2, νj/2) distribution with

E[1/wi
h|zih,c = 0 ∀c, θi, ζ = ζ(L−1)] = 1.

Define log p̃(θi, wi, zi|ζ) as the result of substituting the expectations (52)-(55) into

log p(θi, wi, zi|ζ) in (51). The Maximization step amounts to computing the ζ that maxi-

mizes

ζ(L) = argmax
ζ

1

N

N∑
i=1

W i log p̃(θi, wi, zi|ζ).
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Using the analogy with Maximum Likelihood estimation for the Seemingly Unrelated Re-

gression model with Gaussian errors (for the k elements of θi) and the same r ‘regressors’ X i

in each equation, in which case the Ordinary Least Squares (OLS) estimator provides the

Maximum Likelihood Estimator, and with Maximum Likelihood estimation for the multi-

nomial distribution, it is easily derived that ζ(L) consists of:

β
(L)′

h =

[
N∑
i=1

m!∑
c=1

Wi z̃/w
i

h,c Xi X
′
i

]−1 [ N∑
i=1

m!∑
c=1

Wi z̃/w
i

h,c Xi θ
i′

inv(c)

]
, (56)

Σ̂
(L)
h =

∑N
i=1

∑m!
c=1Wi z̃/w

i

h,c (θ
i
inv(c) − β

(L)
h X i)(θiinv(c) − β

(L)
h X i)′∑N

i=1

∑m!
c=1Wi z̃ih,c

, (57)

η
(L)
h =

∑N
i=1

∑m!
c=1Wi z̃

i
h,c∑N

i=1Wi

. (58)

Further, ν
(L)
h is solved from the first order condition of νh:

−ψ(νh/2) + log(νh/2) + 1−
∑N

i=1Wi ξ
i
h∑N

i=1Wi

−
∑N

i=1Wi δ
i
h∑N

i=1Wi

= 0 (59)

using a procedure for one-dimensional root finding.
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